Трансформаторное масло количество в трансформаторе. Определение вязкости трансформаторного масла. Условная и кинематическая вязкость трансформаторного масла

Трансформаторное масло

Невозможно представить современный мир без электричества, над его выработкой круглосуточно трудятся тысячи электростанций по всей планете. Силовые трансформаторы, предназначенные для распределения электричества, являются одним из самых важных элементов любой электростанции.

Для надежной, а главное, безопасной работы трансформаторов применяется трансформаторное масло, которое обеспечивает электрическую изоляцию и предохраняет от перегрева.

Сфера применения

Трансформатор предназначен для изменения напряжения переменного тока. В современной электротехнике используются различные конструкции силовых трансформаторов, отличающиеся друг от друга.

Во всех моделях трансформаторов присутствует неизменный элемент – это обмотки, или катушки.

Именно они выделяют тепло, которое должно отводить трансформаторное масло.

И именно витки катушек нуждаются в максимальной изоляции.

Эти две проблемы и решает масло.

Масла для трансформаторов на 100% минеральные. Они производятся из очищенной нефти путем ее перегонки; нефть для этого кипятится при температуре от 300 до 400 градусов Цельсия.

Свойства конечного продукта зависят от географического происхождения нефти.

Масла различаются по своему составу и рабочим характеристикам.

Требования, предъявляемые к трансформаторному маслу, довольно высоки.

Основными критериями для определения качества смазки, являются:

  • Диэлектрическая прочность. Хорошие изоляционные показатели трансформаторного масла достигаются путем его тщательной очистки от влаги и примесей. Для очистки масла применяются физические, химические и физико-химические способы. Самым технически простым, а следовательно, недорогим является метод фильтрации. В некоторых случаях одной фильтрации недостаточно, тогда для очистки применяются другие методы, или их сочетания. Помимо этого, в трансформаторы встраиваются системы очистки масла.
  • Чистота масла. Именно от этого показателя зависит диэлектрическая прочность. Чистота свежего масла должна быть подтверждена соответствующим сертификатом. Несмотря на изначальную чистоту, в процессе работы трансформатора масло подвергается воздействию газов, выделяющихся в результате нагревания. Газы растворяются в масле, ухудшая его свойства. В продукте также могут появиться механические примеси. Трансформаторное масло должно проходить ежегодную очистку, независимо от интенсивности эксплуатации. Раз в пять лет масло заменяется, либо проводится его полная регенерация на специальном оборудовании. Помимо этого, трансформаторы обычно имеют встроенную систему фильтрации.
  • Окислительная стабильность. Для наилучшего противодействия окислению в масло добавляются антиокислительные присадки, помогающие сохранности характеристик при длительной эксплуатации. В качестве присадки в большинстве случаев применяется ионол, лучше действующий на продукты реакции окисления.
  • Вязкость. С этим параметром все очень непросто – с одной стороны, с одной стороны, чем выше вязкость трансформаторного масла, тем хуже его электропроводность. Следовательно, тем лучшую электроизоляцию оно обеспечивает. Проблема в том, что высокая вязкость масла осложняет его циркуляцию по системе охлаждения трансформатора. Излишки тепла не отводятся в необходимых количествах, что отрицательно сказывается на работе оборудования. В этой ситуации приходится идти на компромисс и выбирать средние показатели. Оптимальной вязкостью для масел при температуре 20 ºС является 28-30х10-6 м2/с.
  • Температура застывания. Она измеряется с помощью пробирки с образцом масла, наклоненной под углом в 45º. Если в течение 1 минуты уровень масла остается неизменным, это и считается температурой застывания. У свежих масел ее значение -45ºС, однако существуют отступления, обусловленные условиями эксплуатации. Так, у масел, предназначенных для работы в жарких регионах, это значение составляет -35º, а для северных областей -65ºС.
  • Температура вспышки. Это температура, при которой пары горячего масла дают вспышку, если поднести к ним горящую спичку. Само масло не возгорается. Показатели качественного продукта не ниже 135ºС.
  • Температура воспламенения. Температура, при которой масло загорается от пламени и горит не менее 5 секунд.
  • Температура самовозгорания. При ее достижении масло воспламеняется само по себе, без внешних источников огня. Для трансформаторных масел этот параметр не ниже 350ºС, оптимальным значением считается 400 ºС.

Масла для трансформаторов эксплуатируются в различных условиях, подчас, достаточно сложных: при отрицательных температурах в Арктике, или, наоборот – при очень высоких в странах с жарким климатом.

Трансформаторы на морских нефтяных платформах также функционируют в экстремальных режимах.

Для разных условий эксплуатации существуют разные виды трансформаторных масел. Разница рабочих качеств обусловлена различными технологиями их изготовления, а технологии подбираются в зависимости от исходного сырья, т.е. нефти.

Основной принцип следующий: чем выше напряжение, с которым работает трансформатор, тем более жесткие требования предъявляются к маслу.

Различные марки масел представлены, в основном, российскими, шведскими и австрийскими производителями. Зарубежные аналоги чаще всего незначительно превосходят российские по качеству, поскольку требования к показателям масел за рубежом более жесткие. Их стоимость относительно высока.

Производят из нефти, добытой в западной части Сибири. Качество этой марки не слишком высокое, не рекомендуется использовать его в агрегатах мощностью свыше 220 кВ. Марка ТКп вырабатывается из нефти, имеющей малую сернистость. Рассчитано на напряжения до 500 кВ.

Российские масла Т750 и Т1500

К примеру, производятся устаревшими методами, при их изготовлении используется серная кислота, в результате в маслах содержится довольно много серы.

Но для оборудования, напряжение которого не превышает 500 кВ, эти масла вполне подходят, а при дополнительной обработке могут заливаться и в технику, рассчитанную до 750 кВ.

Масло марки ГК

Также российского производства, производится по более современной технологии гидрокрекинга. Применение каталитической гидропарофинизации придает ей высокие гидроизоляционные свойства, что позволяет эксплуатировать масла этой марки на оборудовании с мощностью до 1150 кВ. Масло ВГ устойчиво к окислению, производится из парафинистой нефти.

Отличные изоляционные свойства позволяют использовать в технике, рассчитанной на очень высокие напряжения.

Относится к классу арктических масел и характеризуется стабильной работой при низких температурах. Его малая вязкость рассчитана на эксплуатацию при отрицательных температурах. Подходит для оборудования с высшими классами напряжения.

Применяется для использования в северных широтах. Помимо малой вязкости, имеет низкую температуру застывания, а также низкую температуру вспышки.

Шведская компания Nynas производит масла марок Nitro10X и Nitro11GX

Обе марки производятся из венесуэльской нефти, которая содержит очень мало твердых парафинов и сернистых соединений. Масла, изготовленные из этого сырья, превосходят российские по низкотемпературным свойствам.

Mobil из США выпускает масло Mobilect 44N

Производят из техасских нафтеновых нефтей, в которых тоже низкий уровень парафинов и серы. Благодаря добавлению присадок, у масла хорошие низкотемпературные и антиокислительные показатели.

Читать еще:  Терминал оптической сети ont. Что такое ONT

Помимо перечисленных компаний, выпуском трансформаторных масел занимаются Shell (Нидерланды), Technol (Азербайджан), British Petroleum (Великобритания) и многие другие, а количество марок трансформаторного масла очень велико.

Трансформаторные масла имеют множество параметров и показателей, поэтому подбор нужной марки с подходящим составом – задача для неспециалиста очень сложная. В результате неверного выбора высока вероятность выхода из строя дорогостоящего оборудования. К тому же, трансформаторы – устройства с высоким напряжением, так что вполне возможны и человеческие жертвы.

Поэтому к выбору смазки необходимо отнестись очень серьезно, права на ошибку здесь нет.

Помимо правильного выбора, необходим постоянный контроль за состоянием масла. При соблюдении этих условий производители гарантируют долгую и надежную работу трансформаторов.

Физические показатели трансформаторных масел

Плотностью ρ называется величина, определяемая отношением массы вещества к занимаемому им объему. Относительная плотность жидкости ρ4 определяется как отношение плотности жидкости яри заданной температуре к плотности воды при 4 °С.

Обычно для масел используется показатель относительной плотности жидкости, т. е. отношение плотности масла при 20 °С к плотности воды при 4 °С.

Поскольку масса эталонного килограмма практически равна массе 1 дм 3 воды при 4 °С, значения плотности и относительной плотности практически совпадают.

С повышением температуры плотность масла снижается. Температурный коэффициент объемного расширения равен примерно 0,0006 °С-1.

Изменения плотности и относительной плотности рассчитываются по формуле Д. И. Менделеева

где β — температурный коэффициент объемного расширения;
ρt и ρ0 — плотности при температурах t и 0 °С.

Плотность обычных трансформаторных масел колеблется в пределах 800—890 кг/м 3 и зависит от его химического состава.

Чем больше в масле полициклических ароматических и нафтеновых углеводородов, тем выше его плотность.

Молекулярная масса М трансформаторных масел колеблется в пределах 230—330 и зависит от их фракционного и химического состава.

При близком фракционном составе чем больше в масле ароматических углеводородов, тем меньше молекулярная масса и больше плотность, т. е. по мере углубления очистки масла (удаления полициклических ароматических углеводородов) снижается плотность и увеличивается его молекулярная масса.

Молекулярная масса масел определяется эбуллиоскопическим или криоскопическим методами. Оба метода основаны на законах о разбавленных растворах: первый — на измерении повышения температуры кипения чистого растворителя, а второй — на измерении понижения температуры кристаллизации чистого растворителя. Поскольку полициклические ароматические и нафтено-ароматические углеводороды склонны к ассоциации, молекулярную массу определяют при разной концентрации масла в растворителе и истинную молекулярную массу рассчитывают экстраполяцией к нулевой концентрации.

Показатель преломления характеризует изменение скорости света при переходе из одной среды в другую и измеряется отношением синуса угла падения света к синусу угла его преломления.

Показатель преломления зависит от длины волны света и температуры и при заданных значениях этих параметров является характеристикой вещества.

Обычно показатель преломления для масел определяют при длине волны света λ = 689,3 нм (линия D натрия) и температуре 20 °С и обозначают nD20.

Кроме показателя преломления для характеристики масла используют показатель удельной дисперсии

где nF — показатель преломления для линии спектра Р водорода (голубой) (λ = 486,1 нм);
nс — то же для линии С (красной) (λ = 656,3 нм);
ρ — плотность масла при температуре определения nF и nс.

Удельная дисперсия у насыщенных — парафиновых и нафтеновых — углеводородов около 98—100, а у ароматических достигает 250.

Подобно плотности значение показателя преломления снижается при углублении очистки — снижении концентрации ароматических углеводородов. При близких фракционном составе и вязкости масел показатель преломления удовлетворительно характеризует содержание ароматических углеводородов.

Вязкость любой жидкости, в том числе масла, характеризует свойство ее оказывать сопротивление при перемещении одной части жидкости относительно другой.

В системе СИ за единицу динамической вязкости принимается Па·с (1 Па·с = 10 пз).

Обычно пользуются понятием кинематической вязкости, представляющей собой отношение динамической вязкости к плотности; за единицу ее принимают в системе СИ 1 м 2 /с (1 м 2 /с=106 сСт; 1 мм 2 /с=1 сСт).

Вязкость иногда выражают в других единицах — градусах Энглера (условная вязкость, ВУ). За рубежом пользуются градусами Сейболта и Редвуда.

Рисунок 1 — Номограмма для определения вязкости трансформаторных масел

В практике часто важно знать вязкость масла при низких температурах, экспериментальное определение которой сложно. С этой целью определяют вязкость при двух положительных температурах, соединяют значения их прямой на номограмме (рисунок 1) и экстраполируют до искомой температуры. Следует учитывать, что номограмма построена исходя из предположения, что в принятом интервале температур масло проявляет себя как ньютоновская жидкость.

При температурах, близких к температуре застывания, проявляется аномалия вязкости. Поэтому пользоваться номограммой можно до температур на 10—15 °С выше температуры застывания.

На практике широкое применение нашел «индекс вязкости» по Дину и Девису. Эти авторы предложили сравнивать вязкость испытуемого масла с вязкостью масляных дистиллятов, полученных из американских нефтей Пенсильванского и Мексиканского заливов. Индекс вязкости первого масла принимается за 100, а второго—за 0.

Индекс вязкости ИВ рассчитывают по формуле

где ύэт1 и ύэт2 — вязкости при 37,8 °С эталонных масел, у которых ИВ равен соответственно 100 и 0, a ύx — вязкость при 37,8 °С исследуемого масла.

Все масла при 98,9 °С должны иметь одинаковую вязкость.

Плотность, показатель преломления и вязкость масел находятся в зависимости от химического и в первую очередь углеводородного состава масел при близком фракционном составе.

В этом отношении представляют интерес данные К. И. Зиминой и А. А. Симионова, приведенные в таблице 1.

Таблица 1 — Физические показатели насыщенной и ароматических частей погонов анастасиевской нефти

Территория электротехнической информации WEBSOR

Объемы и нормы испытаний трансформаторного масла и его контроль

Объемы и нормы испытаний трансформаторного масла

1. Определение электрической прочности масла

Пробивное напряжение в стандартном разряднике должно быть не ниже следующих величин:

Номинальное напряжение, кВ

Минимально допустимое пробивное напряжение масла, кВ

2. Проверка отсутствия в масле воды и механических примесей

Вода и механические примеси в масле должны отсутствовать

3. Определение кислотного числа

Кислотное число в мг едкого калия (КОН) на 1 г масла не должно быть более 0,05 для трансформаторного масла и 0,03-для трансформаторного масла с присадкой ВТИ-1

4. Проверка отсутствия водорастворимых кислот и щелочей

Водорастворимые кислоты и щелочи в масле должны отсутствовать

5. Определение температуры вспышки масла

Читать еще:  Страховые взносы в социальные фонды. Страховые взносы на омс. Электронная отчетность в фонды

Температура вспышки, определяемая в закрытом тигле, должна быть не ниже 135° С

6. Определение вязкости масла

Вязкость масла не должна превышать следующих величин:

Кинетическая
Соответствующая ей условная в °Э

7. Определение содержания золы

Содержание золы в масле должно быть не более 0,005%

8. Определение температуры застывания

Температура застывания масла должна быть ниже -45° С. Для трансформаторов щловых температура застывания масла не нормируется

9. Определение натровой пробы с подкислением

Натровая проба с подкислением должна быть не более двух баллов

10. Проверка прозрачности масла

Масло, охлажденное до температуры +5° С, должно оставаться прозрачным

11. Проверка общей стабильности масла против окисления

После окисления (искусственного старения) масла осадок и кислотное число не должны превышать следующих величин:

Трансформаторное с присадкой ВТИ-1

Осадок в %
Кислотное число в мг КОН на 1 г

12. Проверка склонности масла к образованию водорастворимых кислот в начале старения

Содержание как летучих, так и нелетучих водорастворимых кислот в мг КОН на 1 г масла должно быть не более 0,005

13. Проверка для масел с присадкой ВТИ-1 ее содержания

Содержание присадки должно быть в пределах 0,009-0,015%

14. Измерение тангенса угла диэлектрических потерь в масле

Тангенс жен быть:
а) пои 20° С -не более 0,З%
б) при 70° С -не более 2,5%

При эксплуатационных осмотрах силовых трансформаторов проверяется:
1) характер гудения трансформатора. Гудение должно быть равномерным, низкого тона и без посторонних звуков;
2) уровень и цвет масла в маслоуказателе; при помощи контрольного краника проверяется наличие сообщаемости маслоуказателя с расширителем;
3) отсутствие течи масла из сварочных швов и из-под фланцев, прокладок, пробок и кранов;
4) отсутствие на поверхности изоляторов трещин, сколов и следов дуги в виде копоти и частиц расплавленного металла;
5) надежность заземления бака трансформатора;
6) состояние пробивного предохранителя;
7) целость и исправность плавких вставок низковольтных предохранителей;
8) правильность расположения патронов высоковольтных предохранителей в неподвижных контактах;
9) состояние шин и контактных соединений (проверяется по цвету термоиндикаторов) ;
10) исправность фильтров и устройств для регенерации масла, отсутствие грязи и воды в грязевиках расширителей;
11) исправность барьеров, сетчатых ограждений, дверей и запоров;
12) исправность рабочего и аварийного освещения.

Нормы расхода масла на доливку

Количество масла в аппарате, т

Годовой расход на доливки в % от залитого масла

ЭКСПЛУАТАЦИЯ ТРАНСФОРМАТОРНОГО МАСЛА

В процессе эксплуатации трансформатора находящееся в нем масло, поглощая из атмосферы влагу и кислород, увлажняется и окисляется.
Трансформаторное масло должно быть защищено от увлажнения и преждевременного старения применением фильтров, поглощающих влагу и кислород из воздуха, поступающего в трансформатор. Для этих целей применяется воздухоосушительный фильтр.
Размеры фильтра зависят от количества применяемого осушителя, которое составляет примерно 0,6-0,8 кг на 1000 ква мощности трансформатора.
Осушитель приготовляется из 100 частей силикагеля; 40 частей хлористого кальция (технического); 3 частей хлористого кобальта.
В процессе эксплуатации фильтров ведется наблюдение за окраской кристаллов осушителя, При окраске розовым цветом большинства кристаллов производятся перезарядка фильтра и заполнение его новой порцией осушителя.
Осушитель, пропитанный хлористым кобальтом, может быть восстановлен для повторного использования при условии нагрева его в течение 18-20 час. при температуре 100-120° С до принятия всей массой осушителя голубой окраски.
При чрезмерном загрязнении воздуха газообразными кислыми веществами фильтры заполняются одним силикагелем без пропитки хлористым кальцием. Восстановление силикагеля производится нагревом при температуре не более 450-500° С. так как при более высокой температуре силикагель спекается и теряет способность поглощать влагу. Этим способом силикагель, может быть восстановлен 10-15 раз.
Кислотность масла снижается путем применения непрерывной регенерации масла работающих трансформаторов при помощи термосифонных фильтров.
Термосифонный фильтр (см. рис. 1) заполнен силикагелем, количество которого берется в среднем около 1% от веса в трансформаторе. Варианты установки термо-сифонных фильтров приведены на рис. 2.
Для трансформаторов мощностью до 560 ква в качестве устройств для непрерывной регенерации масла применяется так называемый поглотительный патрон, заполненный силикагелем.
В процессе эксплуатации сетка с силикагелем может выниматься для перезарядки без слива масла из трансформатора.

Рис. 1. Термосифонные фильтры ОРГРЭС для непрерывной регенерации масла в работающих трансформаторах:
а) для трансформаторов, установленных в закрытых подстанциях; б) для трансформаторов, установленных в открытых подстанциях.

Рис. 2. Варианты установки термо-сифонных фильтров на трансформаторах:
1 — кран для впуска воздуха; 2 — загрузочный люк; 3 — место присоединения фильтра; 4 — разгрузочный люк; 5 — расширитель (консерватор) трансформатора; 6- радиаторы; 7 — бак трансформатора.

Контроль трансформаторного масла, находящегося в эксплуатации

Трансформаторное масло — назначение, применение, характеристики

Трансформаторное масло представляет собой очищенную фракцию нефти, то есть является минеральным маслом. Его получают посредством перегонки нефти, где данная фракция кипит при 300 — 400°С. В зависимости от сорта исходного сырья свойства трансформаторных масел получаются различными. Масло отличается сложным углеводородным составом, где средний вес молекул варьируется от 220 до 340 а.е.м. В таблице приведены основные компоненты и их процент в составе трансформаторного масла.

Свойства трансформаторного масла, как электрического изолятора, определяются главным образом значением тангенса угла диэлектрических потерь. Поэтому наличие воды и волокон в масле полностью исключается, поскольку любые механические примеси ухудшают данный показатель.

Температура застывания трансформаторного масла — от -45°С и ниже, это важно для обеспечения его подвижности в низкотемпературных условиях эксплуатации. Эффективному отводу тепла способствует наиболее низкая вязкость масла даже при температурах от 90 до 150°С в случае вспышек. Для разных марок масел эта температура может быть 150°С, 135°С, 125°С, 90°С, не ниже.

Крайне важным свойством трансформаторных масел является их стабильность в условиях окисления, трансформаторное масло должно сохранять требуемые параметры на длительный период работы.

Что касается конкретно РФ, то здесь все сорта трансформаторных масел, применяемых на промышленном оборудовании, обязательно ингибированы антиокислительной присадкой — ионолом (2,6-дитретичный бутилпаракрезол, известный еще как агидол-1). Присадка взаимодействует с активными пероксидными радикалами, возникающими в цепи окислительной реакции углеводородов. Так, ингибированные трансформаторные масла имеют при окислении ярко выраженный индукционный период.

Сначала восприимчивые к присадкам масла окисляются медленно, поскольку возникающие цепи окисления прерываются ингибитором. Когда присадка истощена, масло окисляется с обычной скоростью, как без присадки. Чем больше индукционный период окисления масла, тем выше и эффективность присадки.

Немало эффективность присадки связана и с углеводородным составом масла, и с наличием примесей неуглеводородного рода, способствующих окислению, коими могут выступать азотистые основания, нефтеновые кислоты и кислородосодержащие продукты окисления масла.

Читать еще:  Театрализованные сказки в доу старшая группа. Сценарий театрализованной сказки в старшей группе. Сценарии детских спектаклей-сказок

Когда нефтяной дистиллят очищают, содержание ароматических углеводородов снижается, устраняются неуглеводородные включения, и в итоге стабильность ингибированного ионолом трансформаторного масла повышается. Между тем, существует международный стандарт «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей».

Трансформаторное масло обладает горючестью, оно биоразлагаемо, почти не обладает токсичностью и не вредит озоновому слою. Плотность трансформаторного масла лежит в пределах от 840 до 890 килограмм на кубометр. Одно из важнейших свойств — вязкость. Чем выше вязкость, тем выше электрическая прочность. Вместе с тем, для нормальной работы в силовых трансформаторах и в выключателях, масло не должно быть очень вязким, иначе охлаждение трансформаторов не будет эффективным, а выключатель не сможет быстро разорвать дугу.

Здесь нужен компромисс относительно вязкости. Обычно кинематическая вязкость при температуре 20°С, у большинства трансформаторных масел лежит в диапазоне от 28 до 30 мм2/с.

Прежде чем заполнить маслом аппарат, масло очищают при помощи глубокой термовакуумной обработки. Согласно действующему руководящему документу «Объем и нормы испытаний электрооборудования» (РД 34.45-51.300-97), концентрация воздуха в трансформаторном масле, заливаемом в трансформаторы с азотной или пленочной защитой, в герметичные измерительные трансформаторы и в герметичные вводы, не должна быть выше 0,5 (определяется методом газовой хроматографии), а максимальное содержание воды — 0,001% массы.

Для силовых трансформаторов без пленочной защиты и для негерметичных вводов допустимо содержание воды не более 0,0025% массы. Что касается содержания механических примесей, определяющего класс чистоты масла, то оно не должно быть для оборудования напряжением до 220кВ хуже 11-го, а для оборудования напряжением выше 220 кВ — не хуже 9-го. Пробивное напряжение, в зависимости от рабочего напряжения, приведено в таблице.

Когда масло залито, то пробивное напряжение на 5 кВ ниже, чем у масла до заливки в оборудование. Допустимо снижение класса чистоты на 1 и увеличение процента воздуха на 0,5%.

Условия окисления (метод определения стабильности — по ГОСТу 981-75)

Температура застывания масла определяется при испытаниях, когда пробирку с загустевшим маслом наклоняют на 45°, и масло остается на том же уровне в течение минуты. Для свежих масел эта температура не должна быть ниже -45°С.

Данный параметр имеет ключевое значение для масляных выключателей. Тем не менее, в разных климатических зонах требования к температуре застывания различны. Например, в южных регионах допускается применять трансформаторное масло с температурой застывания -35°С.

В зависимости от условий эксплуатации оборудования, нормативы могут варьироваться, возможны в некоторых пределах отступления. Так, например, арктические сорта трансформаторного масла не должны застывать при температуре выше -60°С, а температура вспышки снижается до -100°С (температура вспышки — температура, при которой нагретое масло производит пары, становящиеся легко воспламеняемыми при перемешивании с воздухом).

Вообще, температура вспышки не должна быть ниже 135°С. Также важны такие характеристики, как температура воспламенения (масло воспламеняется и горит при ней в течение 5 и более секунд) и температура самовоспламенения (при температуре 350-400°С масло воспламеняется даже в закрытом тигле при наличии воздуха).

Трансформаторное масло обладает теплопроводностью от 0,09 до 0,14 Вт/(м×К), и она снижается с ростом температуры. Теплоемкость же с ростом температуры возрастает, и может быть от 1.5 кДж/(кГ×К) до 2.5 кДж/(кГ×К).

С коэффициентом теплового расширения связаны нормативы по размерам расширительного бака, и данный коэффициент находится в районе 0,00065 1/К. Удельное сопротивление трансформаторного масла при 90°С и в условиях напряженности электрического поля 0.5 МВ/м в любом случае не должно быть выше 50 Гом*м.

Равно как и вязкость, удельное сопротивление масла с ростом температуры снижается. Диэлектрическая проницаемость — в пределах от 2,1 до 2,4. Тангенс угла диэлектрических потерь, как было сказано выше, связан с наличием примесей, так для чистого масла он не превышает 0,02 при 90°С в условиях частоты поля 50 Гц, а в окисленном масле может превышать 0.2.

Электрическую прочность масла измеряют во время испытаний на пробой 2,5 мм разрядника с диаметром электродов 25,4 мм. Результат не должен быть ниже 70 кВ, и тогда электрическая прочность составит не менее 280 кВ/см.

Несмотря на принятые меры, трансформаторное масло может поглощать газы, и растворять в себе значительное их количество. В обычных условиях в одном кубическом сантиметре масла легко растворится 0,16 миллилитров кислорода, 0,086 миллилитров азота и 1,2 миллилитра углекислоты. Очевидно, кислород начнет окислять мало. Если газы наоборот выделяются, это признак появления дефекта обмотки. Так, по наличию растворенных в трансформаторном масле газов, посредством хроматографического анализа выявляют дефекты трансформаторов.

Сроки службы трансформаторов и масла не связаны напрямую. Если трансформатор способен работать безотказно лет 15, то масло каждый год желательно очищать, а через 5 лет — регенерировать. Однако, для предотвращения быстрого истощения ресурса масла предусмотрены вполне определенные меры, принятие которых значительно продлит срок службы трансформаторного масла:

Установка расширителей с фильтрами для поглощения воды и кислорода, а также выделяемых из масла газов;

Избегание рабочего перегрева масла;

Непрерывная фильтрация масла;

Высокие температуры, реакции масла с проводниками и диэлектриками, — все это способствует окислению, которое и призвана предотвращать антиокислительная присадка, о которой упоминалось в начале. Но регулярная очистка все равно требуется. Качественная очистка масла возвращает его в пригодное для использования состояние.

Что же может послужить поводом для изъятия из эксплуатации трансформаторного масла? Это могут быть загрязнения масла постоянными веществами, наличие которых не привело к глубоким изменениям в масле, и тогда достаточно провести механическую очистку. Вообще, существует несколько методов очистки: механический, теплофизический (перегонка) и физико-химический (адсорбция, коагуляция).

Если произошла авария, резко снизилось пробивное напряжение, появился нагар, или хроматографический анализ выявил неполадки, трансформаторное масло очищают прямо в трансформаторе или в выключателе, просто отключив аппарат от сети.

При регенерации отработанного трансформаторного масла получают до 3 фракций базовых масел для приготовления других товарных масел, таких как моторные, гидравлические, трансмиссионные масла, смазочно-охлаждающие жидкости и пластичные смазки. В среднем после регенерации получается 70-85% масла, в зависимости от применяемого технологического способа. Химическая регенерация является при этом более дорогостоящей. При регенерации трансформаторного масла возможно получить до 90% базового масла идентичного по качеству свежему.

Ссылка на основную публикацию
Adblock
detector