Строение электронного микроскопа. Полное распределение по энергии электронов, излучаемых образцом

2.2. Устройство и работа растрового электронного микроскопа

Некоторые узлы микроскопа и их функции:

Схема растрового электронного микроскопа, назначение его узлов и их функционирование.

Схема растрового электронного микроскопа приведена на рис. 3 Он состоит из следующих основных узлов: электронной пушки 1. 3, эмитирующей электроны; электроннооптической системы 4. 10, формирующей электронный зонд и обеспечивающей его сканирование на поверхности образца 12; системы, формирующей изображение 11. 17. РЭМ имеет в акуумную камеру, которая служит для создания необходимого разряжения (

10 -3 Па) в рабочем объеме электронной пушки и электронно-оптической системы. Составными частями микроскопа являются механические узлы (шлюзы, гониометрический стол и т.д.), обеспечивающие установку и перемещение образца.

Электронная пушка состоит из катода 1, цилиндра Венельта 2 и анода 3. Обычно в качестве катода используется вольфрамовая V-образная проволока, согнутая под углом, как это показано на рисунке. При нагреве катода прямым пропусканием тока происходит термоэмиссия электронов. Электроны ускоряются напряжением, приложенным между катодом и анодом, которое можно изменять от 1 до 50 кВ. Цилиндр Венельта имеет высокий отрицательный потенциал и служит для регулировки потока электронов. Пучок электронов от пушки проходит через три электромагнитные линзы 5, 6, 9. Фокусировка потока электронов осуществляется магнитным полем, имеющим осевую симметрию. Оно создается электромагнитной линзой, которая представляет собой соленоид. Магнитное поле возникает при пропускании электрического тока через обмотку соленоида, концентрируется с помощью так называемого полюсного наконечника и воздействует на проходящий через него поток электронов. Фокусное расстояние линзы можно плавно регулировать путем изменения силы тока в обмотке соленоида. В системе имеются две диафрагмы 4, 10, ограничивающие расходимость пучка электронов.

Несовершенства электронной оптики, как указывалось ранее, оказывают влияние на разрешающую способность микроскопа. К несовершенствам оптики относятся хроматическая, сферическая аберрации и астигматизм.

Хроматическая аберрация возникает из-за различной скорости (т.е. длины волны) электронов и изменении ее по времени, что приводит к непостоянству фокусных расстояний линз. Хроматическую аберрацию уменьшают путем стабилизации ускоряющего электроны напряжения и электрического тока в линзах.

Сферическая аберрация возникает вследствие того, что электроны проходят на различных угловых расстояниях от оптической оси линзы и поэтому по разному фокусируются. Сферическую аберрацию уменьшают наложением строгих ограничений на геометрию полюсных наконечников линз, увеличением ускоряющего напряжения и уменьшением диафрагмы. В этом случае поток формируется электронами, в меньшей степени отклоненными от оптической оси линзы.

Возникновение астигматизма связано с нарушением магнитной или геометрической симметрии линзы. Устранение асимметрии достигается обеспечением высокой геометрической точности изготовления полюсного наконечника линзы и введением специальной системы, называемой стигматором 8, который корректирует магнитное поле линзы, восстанавливая его симметрию.

Стигматор расположен в объективной линзе 9. Внутри нее также находятся две пары электромагнитных отклоняющих катушек 7, каждая из которых служит для отклонения зонда соответственно в х и y направлениях в плоскости перпендикулярной оси потока электронов. Катушки соединены с генератором 16, обеспечивающим синхронность передвижения электронного зонда по образцу и электронного луча по экрану электронно-лучевой трубки 15.

Образец 12 крепится на предметном столике, который может перемещаться в трех взаимно перпендикулярных направлениях, допускает наклон образца до 90 o к электронно-оптической оси и вращение вокруг оси от 0 до 360 o . Электронный пучок, сфокусированный на поверхности образца, вызывает появление отраженных, вторичных и поглощенных электронов, которые используются для получения изображения поверхности образца. Эти сигналы улавливаются специальными детекторами. На схеме РЭМ (рис.3) представлен только один из возможного набора тип детектора, используемый для регистрации вторичных электронов 13. В детекторе поток электронов преобразуется в электрический сигнал (ток). После прохождения тока через усилитель 14 модулируется яркость экрана.

В качестве детектора вторичных электронов используется детектор Эверхарта-Торнли. Схема детектора представлена на рис. 4. Коллектор 1 имеет положительный потенциал, приблизительно +250 В, благодаря чему траектории вторичных электронов искривляются и они попадают в коллектор. На первичные и отраженные электроны, имеющие высокие значения энергии, этот потенциал существенного влияния не оказывает. (см. видеоролик № 5)

Внутри коллектора электроны ускоряются. Для этого на сцинтиллятор 3 подается высокое напряжение порядка 12 кВ. Его влияние на электронный зонд экранируется корпусом коллектора. Вследствие ускорения вторичные электроны получают достаточную энергию, чтобы вызвать световое излучение материала сцинтиллятора, которое по световоду 2 попадает на фотоумножитель 4, где преобразуется в электрический сигнал. Мощность этого сигнала и, следовательно, яркость соответствующей точки на экране при использовании вторичных электронов определяется топографическим контрастом. Характерная особенность топографического контраста в РЭМ — повышенная яркость изображения острых вершин и выступов рельефа поверхности образца, вызывается увеличением выхода электронов с этих участков.

Большая разрешающая способность РЭМ при работе в режиме регистрации вторичных электронов служит причиной того, что именно он используется при изучении топографии поверхности (поверхность излома, протравленного шлифа и др.). При формировании изображения в режиме детектирования вторичных электронов возможно появление композиционного контраста. Однако он относительно невелик.

Для регистрации отраженных электронов могут использоваться различные типы детекторов, в том числе и детектор Эверхарта-Торнли, но с некоторым изменением. Это вызвано тем, что отраженные электроны имеют высокую энергию, движутся прямолинейно, не отклоняясь электрическим полем в отличие от вторичных электронов. Поэтому нет необходимости использовать в детекторе высокие напряжения и, следовательно, коллектор. Эффективность сбора отраженных электронов зависит от угла наклона детектора к поверхности генерации электронов и расстояния между ними.

Получение изображения в отраженных электронах вызвано тем, что эмиссия этих электронов зависит от порядкового номера химического элемента. Поэтому, например, на плоской поверхности образца участок материала с более высоким средним порядковым номером атомов отражает большее количество электронов. Он выглядит на экране более светлым относительно других участков образца. Полученный контраст называют композиционным.

Изображение в отраженных электронах позволяет определить количество фаз в материале, наблюдать микроструктуру материала без предварительного травления шлифа и др. Выявление структуры материала становится возможным, поскольку химический состав зерен в многокомпонентных системах отличается от химического состава их границ.

В том случае, когда поверхность образца имеет ярко выраженные неровности, то дополнительно к композиционному возникает топографический контраст. Для разделения композиционного и топографического контрастов применяют два детектора отраженных электронов Эверхарта-Торнли.

На рис. 5 приведен пример разделения контрастов. В случае сложения сигналов детекторов Д1 и Д2 усиливается композиционный и устраняется топографический контраст. При вычитании сигналов аннулируется композиционный и усиливается топографический контраст.

При получении изображения в поглощенных электронах сигналом служит ток поглощенных электронов, который равен току первичных электронов за вычетом тока отраженных и вторичных электронов. В итоге он зависит от количества эмитированных отраженных и вторичных электронов. Соответственно в сигнале присутствуют как композиционная, так и топографическая составляющая, причем они не разделяются.

При сканировании зонда по поверхности образца, имеющего химическую неоднородность и сильно выраженный рельеф, интенсивность сигнала будет меняться. Для улавливания сигнала не требуется специальный детектор. Его роль выполняет образец, в котором образуются поглощенные электроны. Поток поглощенных электронов только усиливается, а затем передается в блок изображения. Метод широко использовался в ранних конструкциях сканирующих микроскопов.

Сигналы, преобразованные детектором в электрический ток, после усиления служат для модулирования яркости точек на экране. Формирование изображения поверхности объекта на экране будет происходить следующим образом. С помощью отклоняющих катушек 7 (рис. 3) осуществляется сканирование тонко сфокусированного зонда по поверхности образца. Оно проходит по линии. Совокупность параллельных линий (растр) дает представление о площади объекта. Генератор развертки 16, соединенный с отклоняющими катушками и монитором, обеспечивает синхронность передвижения электронного зонда по образцу и электронного луча по экрану. Благодаря этому, каждая точка на образце соответствует определенной точке на экране. В свою очередь, яркость точки на экране определяется интенсивностью сигнала, поступающего от соответствующей точки образца (см. видеоролик № 6).

Читать еще:  Трехступенчатая система контроля. Трехступенчатый контроль по охране труда — нормативные документы. Каким должен быть контроль охраны труда в организациях

Совокупность сигналов различной интенсивности создает контраст яркости (изображение) на экране трубки. Увеличение РЭМ определяется соотношением амплитуд развертки луча по экрану (L) и зонда по поверхности образца (l) и равно L/l. Так как максимальная длина развертки L на экране фиксирована, то повышение увеличения микроскопа достигается путем уменьшения l. Изменение амплитуды колебания зонда задается с помощью блока управления увеличением 17, путем изменения тока в отклоняющих катушках. Обычно рабочий диапазон изменения увеличений, обеспечивающий высокую четкость изображения поверхности, составляет 10…50000. Увеличение, превышающее максимальное полезное увеличение микроскопа, обычно используется только для его фокусирования.

Школьная Энциклопедия

Nav view search

Login Form

Электронный микроскоп

Подробности Категория: Фотометрия Опубликовано 27.02.2015 10:14 Просмотров: 7680

Разрешающая способность оптического микроскопа ограничена длиной световой волны. С его помощью можно наблюдать детали размером 0,1 — 0,2 мкм. Но этого недостаточно, чтобы видеть молекулы, атомы, или другие объекты, размеры которых значительно меньше. С этой задачей легко справляется электронный микроскоп.

Устройство и принцип действия электронного микроскопа

Чтобы увеличить разрешающую способность микроскопа, нужно уменьшить длину волны, освещающей исследуемый объект. Поэтому вместо световых лучей в электронном микроскопе используются электроны, длина волны которых в тысячи раз меньше длины волны фотонов. Разрешающая способность электронного микроскопа превосходит разрешение оптического микроскопа в 1000 — 10000 раз.

Принцип получения изображения в электронном микроскопе такой же, как и у оптического. Но в отличие от оптического микроскопа, где световым лучом управляют линзы, находящиеся в объективе и окуляре, в электронном микроскопе это делается с помощью магнитных линз.

Магнитные линзы — это электромагниты, создающие сильные неоднородные электромагнитные поля. Изменяя силу тока, можно управлять магнитными полями и менять траекторию электронов, направляя их поток на исследуемый образец.

В электронном микроскопе поток электронов падает на образец сверху, а изображение получается внизу.

Корпус электронного микроскопа представляет собой металлическую трубу. В её верхней части расположен источник электронов. Это вольфрамовая нить накала, называемая катодом. На неё подаётся высокое напряжение, и начинается излучение электронов с поверхности катода. Пучок электронов ускоряется с помощью высокой разности потенциалов между катодом и анодом. Для этой цели используется напряжение от 20 кВ до 1 мВ. Далее ускоренный поток фокусируется и направляется системой магнитных линз на исследуемый образец. Пройдя через него, он попадает в систему увеличивающих магнитных линз. Вся эта система называется электронной колонной.

Так как наш глаз не может воспринимать электронные пучки, то изображение создается на люминесцентном экране либо фиксируется на фотопластинке или цифровой камере.

Чтобы электроны не рассеивались в результате столкновений с молекулами воздуха, внутри колонны создаётся вакуум.

Виды электронных микроскопов

Существует 2 основных вида электронных микроскопов: просвечивающий электронный микроскоп и растровый электронный микроскоп.

Просвечивающий, или трансмиссионный, электронный микроскоп создаёт изображение исследуемого ультратонкого образца (толщиной порядка 0,1 мкм), пропуская через него пучок электронов. Часть электронов при этом рассеивается на образце, а часть проходит через него и затем увеличивается магнитными линзами, выполняющими роль объектива. Изображение регистрируется на экране или фиксируется на фотоплёнке.

Пучок электронов создаётся электронной пушкой. Пушки бывают термоэлектронными и автоэмиссионными.

В термоэлектронной пушке электроны вырываются с поверхности катода (вольфрамовой нити накала или заострённого кристалла гексаборида лантана) при нагревании. Причём чем выше температура, тем больше число вырвавшихся электронов.

В автоэмиссионной пушке электроны испускаются с поверхности катода (вольфрамовой нити) под действием внешнего электрического поля.

В растровом электронном микроскопе пучок электронов попадает на исследуемый объект таким же образом, как и в просвечивающем микроскопе. Но в отличие от него узкий электронный луч не проходит сквозь образец, а сканирует (обегает) каждую его точку, перемещаясь последовательно по горизонтальным строчкам, точка за точкой, строка за строкой. Усиленный сигнал синхронно передаётся на кинескоп. Этот процесс напоминает работу электронно-лучевой трубки в телевизоре. В современных растровых микроскопах изображение выдаётся в цифровой форме.

В растровом микроскопе, как и в просвечивающем, электронный луч образуется электронной пушкой. В электронной колонне он фокусируется и направляется на объект, расположенный на предметном столике. Столик может вращаться в трёх направлениях.

Попадая на поверхность исследуемого образца, электроны взаимодействуют с ней. Часть электронов отражается от поверхности. А часть, получив энергию от электронного пучка, может оторваться от поверхности. Такие электроны называются вторичными. Информация, которую они несут, используется для анализа поверхности и состава образца.

Применение электронных микроскопов

Патент на первый просвечивающий электронный микроскоп был получен в 1931 г. немецким физиком Р. Рутенбергом. А первый такой прибор создали в 1932 г. Эрнст Август Руска и М. Кнолль. Он давал 400-кратное увеличение, которое было меньшим, чем у оптических микроскопов. Но в его конструкции использовались катушки индуктивности вместо стеклянных линз. Это был прототип современного электронного микроскопа.

В конце 30-х годов фирма Siemens создала первую промышленную модель просвечивающего микроскопа, который позволял исследовать внутреннюю структуру вещества.

Первый растровый микроскоп начали производить в середине 60-х годов прошлого века, хотя изобрели его ещё в 1952 г. С его помощью можно получить информацию о рельефе поверхности, составе частиц и даже о химическом составе вещества.

Благодаря высокой разрешающей способности, электронные микроскопы нашли широкое применение в микробиологии, медицине, фармакологии, вирусологии. Они дали возможность получать 3-хмерные изображения микроскопических структур (электронная томография), контролировать качество лекарственных препаратов, изучать воздействие токсинов на организмы. Незаменимы они в промышленности. Их используют для получения двухмерных и трёхмерных микрохарактеристик образцов, в микротехнологиях: травлении, полировке, легировании, литографии и др.

Электронный микроскоп. Электронный микроскоп в гараже

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия — это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах — областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

Читать еще:  Тп линк горит один потом все индикаторы. (лампочки) Индикаторына роутере TP-Link. Какие должны мигать, гореть, что означают? Роутер не реагирует на подключение к электросети

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс — энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 — нормированная энергия, d/dW — число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .

Чтобы понять принцип работы светового микроскопа, необходимо рассмотреть его строение.

Главный прибор биологии является оптической системой, которая состоит из штатива, осветительной и оптической части. В штатив входят башмак; предметный столик с держателем предметного стекла и двумя винтами, перемещающими столик в двух перпендикулярных направлениях; тубус, тубусодержатель; макро- и микровинты, передвигающие тубус в вертикальном направлении.

Для освещения объекта используют естественное рассеянное или искусственное освещение, которое осуществляется посредством стационарно вмонтированного в башмак микроскопа или соединенного через планку осветителя.

В осветительную систему также входят зеркало с плоской и вогнутой поверхностями и конденсор, расположенный под предметным столиком и состоящий из 2 линз, ирисовой диафрагмы и откидывающейся оправы для светофильтров. Оптическая часть включает наборы объективов и окуляров, которые позволяют изучать клетки на разных увеличениях.

Принцип работа светового микроскопа заключается в том, что пучок света от источника освещения собирается в конденсаторе и направляется на объект. Пройдя через него, лучи света попадают в систему линз объектива. Они выстраивают первичное изображение, которое увеличивается при помощи линз окуляра. В целом объектив и окуляр дают обратное мнимое и увеличенное изображение объекта.

Основными характеристиками любого микроскопа являются разрешающая способность и контраст.

Разрешающая способность — это минимальное расстояние, на котором находятся две точки, демонстрируемые микроскопом раздельно.

Разрешение микроскопа вычисляет по формуле

где л — длина волны света осветителя,

б — угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в него,

n — коэффициент преломления среды.

Чем меньше длина волны луча, тем более мелкие детали мы сможем наблюдать через микроскоп. И чем выше нумерическая апертура объектива (n, тем выше разрешение объектива.

Световой микроскоп может повысить разрешающую способность человеческого глаза примерно в 1000 раз. Это является «полезным» увеличением микроскопа. При использовании видимой части спектра света конченый предел разрешения светового микроскопа составляет 0,2-0,3 мкм.

Однако следует отметить, что световая микроскопия позволяет нам увидеть частицы, меньшие предела разрешения. Это можно осуществить благодаря методу «Темного поля» или «Ультрамикроскопии».

Рис. 1 Световой микроскоп: 1 — штатив; 2 — предметный столик; 3 — насадка; 4 — окуляр; 5 — тубус; 6 — устройство смены объективов; 7 — микрообъектив; 8 — конденсор; 9 — механизм перемещения конденсора; 10 — коллектор; 11 — осветительная система; 12 — механизм фокусировки микроскопа.

Строение электронного микроскопа

Основная часть электронного микроскопа — полый вакуумный цилиндр (воздух откачан, чтобы исключить взаимодействие электронов с его составляющими и оксисления нити катода). Между катодом и анодом подаётся высокое напряжение, для дополнительного ускорения электронов. В конденсорной линзе(которая представляет собой электромагнит, как и все линзы электронного микроскопа) пучок электронов фокусируется и попадает на изучаемый объект. Прошедшие электроны, формируют на объективной линзе увеличенное первичное изображение, которое увеличивает проекционная линза, и проецируется на экран, который покрыт люминесцентным слоем для свечения при попадании на него электронов.

Рис. 2. Электронный микроскоп: 1 — электронная пушка; 2 — анод; 3 — катушка для юстировки пушки; 4 — клапан пушки; 5 — 1-я конденсорная линза; 6 — 2-я конденсорная линза; 7 — катушка для наклона пучка;8 — конденсор 2 диафрагмы; 9 — объективная линза; 10 — блок образца; 11 -дифракционная диафрагма; 12 — дифракционная линза; 13 — промежуточная линза; 14 — 1-я проекционная линза; 15 — 2-я проекционная линза; 16 — бинокуляр (увеличение 12); 17 — вакуумный блок колонны; 18 — камера для 35-миллиметровой катушечной пленки; 19 — экран для фокусировки; 20 — камера для пластинок; 21 — главный экран; 22 — ионный сорбционный насос.

Трансмиссионный электронный микроскоп – прибор для получения увеличенного изображения микроскопических предметов, в котором используются пучки электронов. Электронные микроскопы имеют большее разрешение по сравнению с оптическими микроскопами, кроме того они могут применяться также для получения дополнительной информации относительно материала и структуры объекта.
Первый электронный микроскоп был построен в 1931 году немецкими инженерами Эрнст Руска и Максом ствола. Эрнст Руска получил за это открытие Нобелевскую премию по физике в 1986 году. Он разделил ее с изобретателями туннельного микроскопа, поскольку Нобелевский комитет чувствовал, что изобретателей электронного микроскопа несправедливо забыли.
В электронном микроскопе для получения изображения используются фокусированные пучки электронов, которыми бомбардируется поверхность исследуемого объекта. Изображение можно наблюдать разными способами – в лучах, которые прошли через объект, в отраженных лучах, регистрируя вторичные электроны или рентгеновское излучение. Фокусировки пучка электронов с помощью специальных электронных линз.
Электронные микроскопы могут увеличивать изображение в 2 млн. раз. Высокое разрешение электронных микроскопов достигается за счет малой длины волны электрона. В то время как длина волны видимого света лежит в диапазоне от 400 до 800 нм, длина волны электрона, ускоренного в потенциале 150 В, составляет 0,1 нм. Таким образом, в электронные микроскопы можно практически рассматривать объекты размером с атом, хотя практически осуществить это трудно.
Схематическая строение электронного микроскопа Строение электронного микроскопа можно рассмотреть на примере прибора, работающего на пропускание. Монохроматический пучок электронов формируется в электронной пушке. Его характеристики улучшаются конденсорною системой, состоящей из конденсорнои диафрагмы и электронных линз. В зависимости от типа линз, магнитных или электростатических, различат магнитные и электростатические микроскопы. В дальнейшем пучок попадает на предмет, рассеиваясь на нем. Рассеянный пучок проходит через апертуру и попадает в объективную линзу, которая предназначена для растягивания изображения. Растянутый пучок электронов вызывает свечение люминофора на экране. В современных микроскопах используются несколько степеней увеличения.
Апертурная диафрагма объектива электронного микроскопа очень мала, составляет сотые доли миллиметра.
Если пучок электронов от объекта потраплае непосредственно на экран, то объект будет выглядеть на нем темным, а вокруг образовываться светлый фон. Такое изображение называется свитлопольним. Если же в апертуру объективной линзы попадает не основы пучок, а рассеянный, то образуется темнопольный изображения. Темнопольный изображение контрастнее, чем свитлопольне, но разрешение у него меньше.
Существует много различных типов и конструкций электронных микроскопов. Основными среди них являются:

Читать еще:  Статусы про сплетников и завистников прикольные. Ловкие статусы про зависть и сплетников

Просвичуюючий электронный микроскоп – прибор, в котором электронный пучок просвечивает предмет насквозь.

Сканирующий просвичуюючий электронный микроскоп позволяет изучать отдельные участки объекта.

Сканирующий электронный микроскоп использует для исследования поверхности объекта, выбитые электронным пучком вторичные электроны.

Рефлекторный электронный микроскоп использует упруго-рассеянные электроны.

Электронный микроскоп можно, также, снарядить системой детектирования рентгеновских лучей, которые излучают сильно возбуждены, при столкновении с высокоэнергетическими електоронамы, атомы вещества. При выбивании электрона из внутренней электронных оболочек, образуется характеристическое рентгеновское излучение, исследуя которое можно установить химический состав материала.
Изучение спектра неупругие-рассеянных электронов позволяет получать информацию о характерных электронные возбуждения в материале исследуемого предмета.
Электронные микроскопы широко используются в физике, материаловедении, биологии.

Вчера сфотографировал белую Ауди. Получилось отличное фото audi сбоку. Жалко, что тюнинг на фотографии не видно.

15.1.2. Растровая электронная микроскопия

Аналитическим (а в ряде случаев контрольно-измерительным) прибором, использующим в качестве рабочего инструмента сфокусированный до наноразмеров электронный зонд, является растровый (или сканирующий) электронный микроскоп (РЭМ). Внешний вид прибора приведен на рис. 15.11.

В РЭМ, как и в ПЭМ, используется поток электронов, но в отличие от последнего РЭМ позволяет исследовать массивные образцы без их предварительной и крайне трудоемкой подготовки. Если в ПЭМ энергия электронов составляет сотни и более килоэлектрон-вольт, то в РЭМ от нескольких сотен электрон-вольт (низковольтный режим) до нескольких десятков килоэлектрон-вольт (традиционный режим).

Рис. 15.11. Растровый электронный микроскоп:

1 — электронная пушка; 2 — зондоформирующая система; 3 — камера образцов; 4 — вакуумная система; 5 — монитор

Растровый электронный микроскоп — не отдельный прибор, предназначенный для анализа одного параметра, а целая лаборатория, работающая на базе группы аналитических методов. Задавая условия облучения образца и применяя соответствующие преобразователи информационных сигналов, с помощью РЭМ можно реализовать следующие методы:

  • • растровая электронная микроскопия морфологического анализа;
  • • электронный микроанализ элементного состава;
  • • электронная оже-спекгроскопия;
  • • электронная оже-спектроскопия потенциала появления;
  • • спектроскопия электронных потерь энергии;
  • • электронная спектроскопия для химического анализа;
  • • дифракция электронов низких энергий;
  • • дифракция электронов высоких энергий;
  • • анализ распределения электрических и магнитных полей, создаваемых объектом исследования.

Применение остросфокусированного (до 10 А в диаметре) электронного зонда позволяет исследовать локальную область образца того же порядка.

Принцип работы РЭМ иллюстрируется схемой, приведенной на рис. 15.12. Электронная пушка 1 является источником электронов высокой яркости. С помощью зондоформирующей системы 3 уменьшенное до размеров нескольких нанометров изображение этого источника фокусируется на поверхности исследуемого образеца. Посредством растровой

(отклоняющей или сканирующей) системы 4 электронный зонд перемещается по поверхности образца 6, последовательно облучая, точку за точкой, поле сканирования. Размер поля сканирования d связан с масштабом М формируемого изображения соотношением

где D — размер поля монитора, на который выводится изображение объекта.

Рис. 15.12. Схема растрового электронного микроскопа:

  • 1 — электронная пушка; 2 — блок управления электронным зондом;
  • 3 зондоформирующая система; 4 — растровая (отклоняющая) система;
  • 5, 13 — преобразователь информационных сигналов (излучений);
  • 6, 12— исследуемый объект; 7— рабочий стол; 8 — усилитель; 9— аналого- цифровой преобразователь; 10— персональный компьютер; 11— монитор

Поскольку поле сканирования существенно меньше размеров исследуемого образца, последний размещается на рабочем столе 7. С его помощью требуемый участок поверхности совмещают с полем сканирования.

Текущую точку образца облучают электронным зондом и регистрируют соответствующим преобразователем 5 амплитуду информационного сигнала. Одновременно зарегистрированный сигнал усиливают (блок усиления 8) и через блок АЦП 9 подают на вход управляющего ПК 10, который задает яркость свечения пикселя на экране пропорционально амплитуде зарегистрированного сигнала. Далее переходят к облучению следующей точки.

Координаты облучаемой точки на поверхности образца и пикселя на экране монитора задают двумя числами; порядковым номером этого участка в строке и номером строки, на которой он расположен. Так как координаты облучаемой точки и соответствующего ей пикселя совпадают, на экране монитора складывается картина, соответствующая изменению амплитуды информационного сигнала от точки к точке. В этом состоит принципиальное отличие РЭМ-изображения от реального изображения поверхности, которое наблюдают в оптическом микроскопе.

Картина, возникающая на экране монитора в РЭМ, это абстрактное построение, результат отображения физических процессов, протекающих при взаимодействии электронного зонда с твердым телом. Его можно лишь интерпретировать как изображение, но для этого надо понимать физические механизмы, посредством которых оно формируется, и представлять, почему при перемещении зонда от точки к точке по поверхности образца регистрируемый сигнал претерпевает изменения.

Определим их как контраст С = AS/Scp, где AS — изменение сигнала между двумя любыми соседними точками на изображении; Scp — усредненный сигнал. Если в двух точках сигнал различен по величине, то существует контраст изображения этих двух точек. Мерой контраста является величина С = (Д, — S2)/Scp = Д5/5ср.

Рассмотрим типы контрастов в зависимости от основных физических механизмов их возникновения.

Контраст, зависящий от атомного номера элемента (элементный контраст), обусловлен наличием в образце областей, различающихся по своему элементному составу. Такой контраст объясняется тем, что коэффициент отражения электронов ц увеличивается с возрастанием атомного номера материала мишени Z, как это показано на рис. 15.13 для энергии электронов 30 кэВ и нормальном падении луча. Таким образом, на изображении многофазного объекта области с большим сигналом соответствуют участкам образца с большим атомным номером, области с промежуточным атомным номером создают сигналы промежуточных уровней. Если исследуемая область является сплавом или химическим соединением, то эффективный коэффициент отражения равен усредненным коэффициентам отражения чистых элементов.

Рис. 15.13. Возникновение контраста изображения, сформированного при регистрации потока отраженных электронов: а — зависимость коэффициента отражения р электронов от атомного номера Zo6pa3ua (энергия первичных электронов 30 кэВ); б — изменение амплитуды А видеосигнала при перемещении электронного пучка по поверхности объекта вдоль координаты X

Наиболее близкой аналогией этого типа контраста является цвет, воспринимаемый человеческим глазом. Поэтому для лучшей интерпретации получаемых результатов определенным значениям сигнала присваивается какой-либо цвет (совершенно произвольно, согласно предпочтениям конкретного исследователя), что придает получаемому изображению наглядность, но физического смысла не несет. Элементный контраст объясняется различием в количестве покидающих образец электронов.

Топографический контраст связан с наличием на поверхности образца шероховатостей или рельефа, т. е. с его топографией. Он обусловлен влиянием топографии как на отраженные, так и на вторичные (медленные) электроны.

Установлено, что коэффициент отражения электронов ц зависит от угла наклона

Ссылка на основную публикацию
Adblock
detector