Содержание

Сквозная язвенная коррозия стальных листов. Питтинговая коррозия. Методы защиты металла от питтинговой коррозии

Что такое питтинг и чем опасна точечная коррозия металла?

Питтинговая коррозия, называемая также точечной, поражает только пассивные сплавы и металлы. Обычно она разрушает алюминиевые, циркониевые, хромистые, никелевые, хромоникелевые композиции, а также нержавеющие стали.

Этапы роста питтинга:

1) Зарождение питтинга происходит в местах дефектов пассивной пленки (царапины, разрывы) или ее слабых местах (если имеет место неоднородность сплава) при достижении определенного потенциала — потенциала питтингообразования (φпо). Ионы-активаторы вытесняют адсорбированный на поверхности кислород или при взаимодействии разрушают оксидную защитную пленку.

2) Рост питтинга – происходит по электрохимическому механизму, вследствии интенсивного растворения пассивной оксидной пленки. Из-за активного растворения пленки происходит усиление анодного процесса в самом питтинге (активационный рост питтинга). Со временем, когда питтинг будет достаточно расширен, активационный рост замедляется, начинается диффузионный режим роста питтинга.

3) Иногда рост питтинга прекращается и наступает стадия репассивации. Основной причиной репассивации можно считать сдвиг потенциала поверхности в отрицательную сторону, т.е. сторону пассивации. Питтинг с диффузионным режимом роста (постепенно, стабильно растущий питтинг) не может перейти в стадию репассивации.

Классификация питтинга

По размерам (в мм)

  • Микропиттинг –

Открытый. Небольшие вкрапления, которые заметны визуально.

Закрытый. Сложный (с точки зрения диагностики) и опасный в плане эксплуатации изделий вид питтинга. Выявить такой дефект без использования специального оборудования практически невозможно. Поэтому и принятие каких-то мер в большинстве случаев бессмысленно, так как они уже несвоевременны, следовательно, неэффективны.

Способы защиты от питтинга

Основные методики известны специалистам, и их реализация на производстве требует применения специального оборудования, материалов и технологий. Как защитить от питтинга нержавеющую сталь в быту?

  • Тщательная полировка поверхности.
  • Нанесение защитного покрытия. Кроме лакокрасочного, используется такой метод, как хромирование изделий. О том, как это можно сделать самостоятельно, рассказывается здесь. А вот цинкование для этих целей бессмысленно – этот металл от питтинга не защитит.
  • Снижение кислотности среды, с которой соприкасается нержавеющая сталь. Например, повышением щелостности.
  • Эл/химическая

1 Как происходит питтинговое ржавление металлических изделий?

Под такой коррозией понимают локальное разрушение металлоконструкций и разнообразных металлоизделий, работающих в морских и нейтральных водах и в других средах. Она чаще всего формируется тогда, когда основной металл характеризуется пассивным состоянием. Питтинговая коррозия (смотрите фото) описывается очень быстрым течением. Поэтому она нередко становится причиной возникновения точечного сквозного разрушения нержавеющих сталей.

Схема обычной питтинг-коррозии выглядит следующим образом:

  • на поверхности металлических конструкций с защитной оксидной пленкой малой толщины происходит адсорбирование активных ионов, играющих роль активаторов процесса;
  • в оксиде отмечается замещение некоторого количества кислорода указанными активаторами, что приводит к образованию комплексных поверхностных ионов с высоким уровнем растворимости;
  • металл входит во взаимодействие с раствором из-за того, что имеющаяся пассивная пленка подвергается разрушению на отдельных участках, на которых потенциал поверхности имеет повышенный (по сравнению с основным материалом) отрицательный показатель.

В результате всех описанных процессов появляются локальные токи. Они приводят к заполяризовыванию нержавеющих сталей (при условии малого омического сопротивления пассивной пленки), которое запускает бурный анодный процесс в зонах образования питтингов. Анионы-активаторы при этом мигрируют к точкам коррозии, а восстановительный катодный процесс окислителя протекает на металлической пассивной поверхности.

Зона образования питтингов

Склонность сплавов и металлов к питтинг-коррозии обуславливается такими основными факторами:

  • присутствие ионов-активаторов в среде и показатель ее рН (в кислых средах большинство нержавеющих сталей подвергаются рассматриваемому в статье типу ржавления);
  • природа материала (точечному разрушению не подвергаются кремний, хром и молибден, а вот цинк, никель и алюминий коррозируют практически всегда);
  • состояние металлической поверхности (если она шероховатая, изделие почти наверняка начнет ржаветь; чем лучше отполирована поверхность, тем меньше вероятность появления на ней точечной коррозии).

Кроме того, число питтингов повышается при увеличении температуры рабочей среды, в которой эксплуатируется металлическая конструкция.

2 Разновидности питтингов – какими они бывают?

По величине точечные поражения бывают обычными (размер питтингов – от 0,1 до 1 мм), микроскопическими (не выше 0,1 мм) и язвенными (свыше 1 мм), по форме:

  • ограненные, цилиндрические, полусферические, полиэдрические;
  • закрытые, поверхностные и открытые.

Неправильные по форме и ограненные питтинги, которые вы видите на фото, часто встречаются на поверхности нержавеющих сталей, на хромовых, алюминиевых и никелевых изделиях, на низколегированных и углеродистых сталях, а также на железе. Такие точечные разрушения имеют форму сложных многогранников, призм и пирамид. Конкретный же вид их огранки зависит от пустот решетки (кристаллической), которые формируются на первых этапах зарождения коррозионных проявлений.

Точечные разрушения на поверхности нержавеющей стали

Полированные питтинги, как правило, характеризуются полусферической конфигурацией. Изнутри подобные разрушения описываются блестящей поверхностью. Она говорит о том, что растворение в оксидной пленке идет по схеме, примерно идентичной процессу электрополировки (то есть мы имеем дело с изотропным растворением, на течение которого структура материала не оказывает никакого влияния).

Чаще всего полированные питтинги отмечаются на изделиях из тантала, алюминия, железа, на нержавеющих сталях и конструкциях из кобальтовых, титановых, никелевых сплавов. В некоторых случаях слияние множества небольших по размерам ограненных питтингов приводит к появлению полусферических крупных разрушений точечного характера.

Крупные разрушения точечного характера

Питтинговая коррозия закрытого типа считается самым тяжелым типом ржавления пассивных металлов. Их практически невозможно разглядеть не вооруженным специальными увеличительными приборами глазом. Подобные разрушения углубляются в стали и сплавы и нередко приводят к образованию пробоев в них.

Открытая точечная коррозия видна при незначительном увеличении при помощи стандартного оптического оборудования либо невооруженным глазом. Она может приобрести характер сплошной, когда питтингов на поверхности углеродистых или нержавеющих сталей очень много. При таком ржавлении функцию катода выполняет пассивная пленка.

Питтинги поверхностной группы проникают не вглубь основного металла, они развиваются в ширину. Это приводит к появлению выбоин (хорошо различимых) на поверхности металлоизделий.

Внешнее проявление питтинговой коррозии

Выражается в точечных поражениях сплавов (в том числе, нержавеющих сталей) и металлов. Питтинговая коррозия начинается с поверхности образца и постепенно распространяется вглубь структуры, вызывая появление в материале полостей (язв). Чаще всего проявляется в местах различных дефектов нержавеющей стали.

Защита металлов и сплавов от питтинговой (точечной) коррозии осуществляется следующими методами:

1) Электрохимическая катодная и анодная защита (иногда вместе с ингибиторами);

2) Подбор специальных материалов, которые не подвергаются питтинговой (точечной) коррозии. Повышению стойкости способствуют введение в состав сплава хрома, молибдена, кремния и др. стойких металлов.

3) Ингибирование замкнутых систем (применение нитратов, щелочей, хроматов, сульфатов).

Причины, инициирующие питтинг

  • Механические воздействия на металлы, в результате которых образуются царапины, вмятины на нержавеющей стали.
  • Неоднородность структуры нержавеющей стали – одна из причин возникновения питтинга.
  • Естественные процессы – внутренние напряжения, различные микровключения и ряд других.
  • Повреждения защитного (антикоррозийного) покрытия нержавеющей стали.
  • Несоблюдение технологии производства и обработки сплава – повышенная пористость структуры, остаточная окалина.
  • Состояние поверхности образца из нержавеющей стали. Ее шероховатость повышает риск возникновения питтинга.
  • Агрессивные среды. На сталь негативно воздействуют морская вода, кислотные среды и так далее.

Особенности питтинговой коррозии

  • Процессы, происходящие при ее возникновении, характеризуются большой скоростью протекания. Несвоевременное принятие мер практически всегда приводит к сквозному разрушению образца.
  • Питтинговой коррозии подвергаются металлы и сплавы, относящиеся к категории «пассивные». К этой группе относится и нержавеющая сталь.
  • Чем выше температура, тем интенсивнее протекает процесс.

Классификация питтинга

По специфике развития

Поверхностный. Наиболее интенсивно развивается по горизонтали, не затрагивая структуру. Результат – небольшие выемки в нержавеющей стали.

Открытый. Небольшие вкрапления, которые заметны визуально.

Закрытый. Сложный (с точки зрения диагностики) и опасный в плане эксплуатации изделий вид питтинга. Выявить такой дефект без использования специального оборудования практически невозможно. Поэтому и принятие каких-то мер в большинстве случаев бессмысленно, так как они уже несвоевременны, следовательно, неэффективны.

Способы защиты от питтинга

Основные методики известны специалистам, и их реализация на производстве требует применения специального оборудования, материалов и технологий. Как защитить от питтинга нержавеющую сталь в быту?

  • Тщательная полировка поверхности.
  • Нанесение защитного покрытия. Кроме лакокрасочного, используется такой метод, как хромирование изделий. О том, как это можно сделать самостоятельно, рассказывается здесь. А вот цинкование для этих целей бессмысленно – этот металл от питтинга не защитит.
  • Снижение кислотности среды, с которой соприкасается нержавеющая сталь. Например, повышением щелостности.
  • Эл/химическая защита. Целесообразно применять для предохранения от питтинга образцов из нержавеющей стали стационарной установки.

Питтинговая коррозия – коварный вид разрушения пассивных металлов и сплавов

Питтинговая коррозия, называемая также точечной, поражает только пассивные сплавы и металлы. Обычно она разрушает алюминиевые, циркониевые, хромистые, никелевые, хромоникелевые композиции, а также нержавеющие стали.

1 Как происходит питтинговое ржавление металлических изделий?

Под такой коррозией понимают локальное разрушение металлоконструкций и разнообразных металлоизделий, работающих в морских и нейтральных водах и в других средах. Она чаще всего формируется тогда, когда основной металл характеризуется пассивным состоянием. Питтинговая коррозия (смотрите фото) описывается очень быстрым течением. Поэтому она нередко становится причиной возникновения точечного сквозного разрушения нержавеющих сталей.

Схема обычной питтинг-коррозии выглядит следующим образом:

  • на поверхности металлических конструкций с защитной оксидной пленкой малой толщины происходит адсорбирование активных ионов, играющих роль активаторов процесса;
  • в оксиде отмечается замещение некоторого количества кислорода указанными активаторами, что приводит к образованию комплексных поверхностных ионов с высоким уровнем растворимости;
  • металл входит во взаимодействие с раствором из-за того, что имеющаяся пассивная пленка подвергается разрушению на отдельных участках, на которых потенциал поверхности имеет повышенный (по сравнению с основным материалом) отрицательный показатель.

В результате всех описанных процессов появляются локальные токи. Они приводят к заполяризовыванию нержавеющих сталей (при условии малого омического сопротивления пассивной пленки), которое запускает бурный анодный процесс в зонах образования питтингов. Анионы-активаторы при этом мигрируют к точкам коррозии, а восстановительный катодный процесс окислителя протекает на металлической пассивной поверхности.

Склонность сплавов и металлов к питтинг-коррозии обуславливается такими основными факторами:

  • присутствие ионов-активаторов в среде и показатель ее рН (в кислых средах большинство нержавеющих сталей подвергаются рассматриваемому в статье типу ржавления);
  • природа материала (точечному разрушению не подвергаются кремний, хром и молибден, а вот цинк, никель и алюминий коррозируют практически всегда);
  • состояние металлической поверхности (если она шероховатая, изделие почти наверняка начнет ржаветь; чем лучше отполирована поверхность, тем меньше вероятность появления на ней точечной коррозии).

Кроме того, число питтингов повышается при увеличении температуры рабочей среды, в которой эксплуатируется металлическая конструкция.

2 Разновидности питтингов – какими они бывают?

По величине точечные поражения бывают обычными (размер питтингов – от 0,1 до 1 мм), микроскопическими (не выше 0,1 мм) и язвенными (свыше 1 мм), по форме:

  • ограненные, цилиндрические, полусферические, полиэдрические;
  • закрытые, поверхностные и открытые.

Неправильные по форме и ограненные питтинги, которые вы видите на фото, часто встречаются на поверхности нержавеющих сталей, на хромовых, алюминиевых и никелевых изделиях, на низколегированных и углеродистых сталях, а также на железе. Такие точечные разрушения имеют форму сложных многогранников, призм и пирамид. Конкретный же вид их огранки зависит от пустот решетки (кристаллической), которые формируются на первых этапах зарождения коррозионных проявлений.

Полированные питтинги, как правило, характеризуются полусферической конфигурацией. Изнутри подобные разрушения описываются блестящей поверхностью. Она говорит о том, что растворение в оксидной пленке идет по схеме, примерно идентичной процессу электрополировки (то есть мы имеем дело с изотропным растворением, на течение которого структура материала не оказывает никакого влияния).

Чаще всего полированные питтинги отмечаются на изделиях из тантала, алюминия, железа, на нержавеющих сталях и конструкциях из кобальтовых, титановых, никелевых сплавов. В некоторых случаях слияние множества небольших по размерам ограненных питтингов приводит к появлению полусферических крупных разрушений точечного характера.

Питтинговая коррозия закрытого типа считается самым тяжелым типом ржавления пассивных металлов. Их практически невозможно разглядеть не вооруженным специальными увеличительными приборами глазом. Подобные разрушения углубляются в стали и сплавы и нередко приводят к образованию пробоев в них.

Открытая точечная коррозия видна при незначительном увеличении при помощи стандартного оптического оборудования либо невооруженным глазом. Она может приобрести характер сплошной, когда питтингов на поверхности углеродистых или нержавеющих сталей очень много. При таком ржавлении функцию катода выполняет пассивная пленка.

Питтинги поверхностной группы проникают не вглубь основного металла, они развиваются в ширину. Это приводит к появлению выбоин (хорошо различимых) на поверхности металлоизделий.

3 Как защитить металл от точечной коррозии?

На сегодняшний день питтинговая коррозия предотвращается тремя основными способами:

  • подавлением замкнутых систем посредством использования сульфатов, щелочных соединений, нитратов, хроматов;
  • легированием стальных сплавов по рациональной методике при помощи введения в их состав молибдена, хрома, кремния либо иных металлов, обладающих высокой стойкостью к точечному ржавлению;
  • применением технологий анодной и катодной антикоррозионной защиты.

Катодная методика показывает хорошие результаты в строго определенных условиях. Ее сложно и зачастую нерентабельно реализовывать в металлоконструкциях сложного типа. Это связно с тем, что невозможно обеспечить требуемый показатель электродного потенциала на всей поверхности таких конструкций.

Электрохимическая защита хорошо подходит для защиты «нержавейки». При смещении в отрицательную сторону ее потенциала точечная коррозия не получает ни малейшего шанса на развитие. Практика продемонстрировала – эффективность анодной и катодной поляризации изделий из нержавеющих сталей очень высока. Поэтому данную методику антикоррозионной защиты используют чаще всего.

Годится катодная технология и для предотвращения образования питтингов на алюминиевых поверхностях. В данном случае необходимо поддерживать потенциал электрода в системе «среда-алюминий» меньше потенциала точечного ржавления. При этом следует контролировать процесс выделения водорода, так как он способен существенно увеличивать значение рН (явление «перезащиты» металла), повышая тем самым риск появления питтингов.

Нередко алюминиевые конструкции защищаются посредством жертвенных анодных элементов. Для изделий с нанесенным на них слоем краски, которые работают под землей, «жертвой» выступают цинковые аноды, для неокрашенных конструкций и металлов, эксплуатируемых под землей, в соленой либо пресной воде – магниевые. А вот конструкции, работающие в жесткой морской воде, как правило, предохраняют от ржавления посредством цинк-алюминиевых жертвенных элементов.

Питтинговая коррозия: причины. Методы защиты металлов от коррозии

Коррозией называют разрушение поверхности материалов в результате активно проходящих окислительно-восстановительных процессов. Разрушение слоев материала приводит к снижению прочности, электрической проводимости, повышению хрупкости и угнетению других свойств металла.

В процессе эксплуатации металлических изделий они подвергаются разрушающим воздействиям различных видов и типов, среди которых выделяется питтинговая коррозия. Она наиболее опасная и непредсказуемая.

Питтинговая коррозия

На поверхности металлических изделий довольно часто можно заметить небольшие углубления, точки бурого или коричневого цвета. Такие точки ученые называют питтингами, а процесс их появления – питтинговой коррозией. Она возникает на поверхности материалов, контактирующих с морской водой, растворами различных солей, химически агрессивными средами и воспринимающих другие негативные факторы.

Питтинговая коррозия поражает только пассивные металлы и сплавы, развивается преимущественно в антикоррозионном слое или по местам разнообразных дефектов. «Точечные язвы» могут нарушать работу различных изделий: от тонких мембран и микросхем, до толстостенных агрегатов. Кроме того, их появление способствует образованию коррозионных трещин, существенно снижающих заданные характеристики материала.

Схема разрушения металла

Для активации питтинговой коррозии необходимо присутствие двух реагентов – активаторов и пассиваторов. В качестве активаторов чаще всего выступают анионы хлора, брома, йода – они содержатся в большинстве сред, в которых эксплуатируются металлические изделия. Они адсорбируются на поверхности металла и образуют с его компонентами растворимые комплексы.

В качестве пассиваторов чаще всего выступает вода или гидроксильная группа. Непосредственно процесс разрушения протекает по следующей схеме:

  1. Ионы-активаторы адсорбируются на поверхности защитной (оксидной) пленки.
  2. Происходит процесс замещения ионов кислорода на ионы активатора процесса.
  3. Образуется большое количество растворимых ионов, в результате чего пленка разрушается.

В результате этого возникает разность потенциалов на поверхности материала, что ведет к появлению локальных токов, активизируется бурный анодный процесс. Ионы-активаторы при этом перемещаются к очагам разрушения, из-за чего питтинговая коррозия прогрессирует.

Разновидности питтинговой коррозии

Вид питтинговой коррозии варьируется в зависимости от окружающих условий, главным образом от температуры, кислотности, химического состава веществ. Под действием этих факторов меняется форма, размер питтингов и их расположение. Так, согласно размеру выделяют точечное разрушение:

  • микроскопическое – размер точек менее 0,1 мм;
  • обычное – диаметр питтингов варьируется от 0,1 до 1 мм;
  • язвенное, когда образования превышают 1 мм в диаметре.

В зависимости от расположения питтинговая коррозия может быть открытого или закрытого типа. В первом случае обнаружить следы разрушения практически невозможно – необходимо применение специальных приборов. Этот вид коррозии очень часто ведет к появлению пробоев.

Открытое ржавление заметно невооруженным взглядом. Нередко питтинги сливаются в единое образование. При этом разрушение материала происходит не вглубь, а в ширину, из-за чего возникают большие по площади дефекты.

Форма питтингов

Форма питтингов зависит от пустот внутри кристаллической решетки, которые образуются на первых этапах коррозионного процесса. Чаще всего встречаются образования неправильной формы – они возникают на поверхности нержавеющей, низколегированной и углеродистой сталей, алюминиевых, хромовых, никелевых сплавов, железа.

Полусферические язвы образуются в результате изотропного растворения. Этот процесс схож с электрополировкой. Отчасти этим и объясняется блестящее дно полукруглых углублений. Наиболее подвержены подобному разрушению титановые, алюминиевые, никелевые и кобальтовые изделия, а также конструкции из тантала. Приблизительно такой же вид имеет питтинговая коррозия нержавеющих сталей.

Кроме того, питтинги могут быть полиэдрическими и ограненными. «Язвы» последнего типа очень часто объединяются друг с другом, что приводит к возникновению крупных полусферических разрушений.

Причины появления

Основными причинами появления питтинговой коррозии являются нарушение технологии производства и механическое воздействие на материал. В результате нарушения технологии отливки в металле появляются разнообразные микровключения, которые нарушают его структуру. Наиболее распространенным включением можно назвать прокатную окалину.

Из-за механического воздействия очень часто на поверхности изделий начинает развиваться питтинговая коррозия. Причины этого кроются в разрушении верхней защитной пленки, нарушении внутренней структуры, выходе на поверхность границ зерен. Наиболее распространенным активизирующим процесс фактором можно назвать динамическое воздействие, что ведет к появлению микротрещин.

Питтинговая коррозия металлов развивается быстрее на шероховатых поверхностях, а также под воздействием агрессивных сред – морской воды, кислотных растворов.

Методы защиты металла от питтинговой коррозии

Для защиты металлических изделий от питтинговой коррозии используют три основных способа:

  1. Ликвидация замкнутых систем при помощи растворов щелочных соединений, сульфатов, хроматов.
  2. Введение в состав материала компонентов с высокой сопротивляемостью точечному ржавлению – молибдена, хрома, кремния.
  3. Использование катодной и анодной технологии создания защитного слоя.

Все представленные методы защиты металлов от коррозии применимы лишь на производстве, ибо требуют высокотехнологичного оборудования и больших капиталовложений. В быту же полностью исключить риск появления питтингов невозможно. Удается лишь ослабить влияние негативно действующих факторов посредством:

  • нанесения антикоррозионных покрытий;
  • улучшения условий эксплуатации изделий;
  • снижения уровня кислотности среды, с которой соприкасается материал.

Но самым действенным и доступным методом является тщательная полировка: уменьшая шероховатость поверхности, вы одновременно повышаете ее антикоррозионную стойкость. Но для лучшего эффекта лучше использовать все методы защиты металлов от коррозии одновременно.

Коррозия металлов

Коррозия – разрушение поверхности сталей и сплавов под воздействием различных физико-химических факторов – наносит огромный ущерб деталям и металлоконструкциям. Ежегодно этот невидимый враг «съедает» около 13 млн. т металла. Для сравнения – металлургическая промышленность стран Евросоюза в прошлом, 2014 году произвела всего на 0,5 млн. тонн больше. И это только – прямые потери. А длительная эксплуатация стальных изделий без их эффективной защиты от коррозии вообще невозможна.

Что такое коррозия и её разновидности

Основной причиной интенсивного окисления поверхности металлов (что и является основной причиной коррозии) являются:

  1. Повышенная влажность окружающей среды.
  2. Наличие блуждающих токов.
  3. Неблагоприятный состав атмосферы.

Соответственно этому различают химическую, трибохимическую и электрохимическую природу коррозии. Именно они в совокупности своего влияния и разрушают основную массу металла.

Химическая коррозия

Такой вид коррозии обусловлен активным окислением поверхности металла во влажной среде. Безусловным лидером тут является сталь (исключая нержавеющую). Железо, являясь основным компонентом стали, при взаимодействии с кислородом образует три вида окислов: FeO, Fe2O3 и Fe3O4. Основная неприятность заключается в том, что определённому диапазону внешних температур соответствует свой окисел, поэтому практическая защита стали от коррозии наблюдается только при температурах выше 10000С, когда толстая плёнка высокотемпературного оксида FeO сама начинает предохранять металл от последующего образования ржавчины. Это процесс называется воронением, и активно применяется в технике для защиты поверхности стальных изделий. Но это – частный случай, и таким способом активно защищать металл от коррозии в большинстве случаев невозможно.

Химическая коррозия активизируется при повышенных температурах. Склонность металлов к химическому окислению определяется значением их кислородного потенциала – способности к участию в окислительно-восстановительных реакциях. Сталь – ещё не самый худший вариант: интенсивнее её окисляются, в частности, свинец, кобальт, никель.

Электрохимическая коррозия

Эта разновидность коррозии более коварна: разрушение металла в данном случае происходит при совокупном влиянии воды и почвы на стальную поверхность (например, подземных трубопроводов). Влажный грунт, являясь слабощёлочной средой, способствует образованию и перемещению в почве блуждающих электрических токов. Они являются следствием ионизации частиц металла в кислородсодержащей среде, и инициирует перенос катионов металла с поверхности вовне. Борьба с такой коррозией усложняется труднодоступностью диагностирования состояния грунта в месте прокладки стальной коммуникации.

Электрохимическая коррозия возникает при окислении контактных устройств линий электропередач при увеличении зазоров между элементами электрической цепи. Помимо их разрушения, в данном случае резко увеличивается энергопотребление устройств.

Трибохимическая коррозия

Данному виду подвержены металлообрабатывающие инструменты, которые работают в режимах повышенных температур и давлений. Антикоррозионное покрытие резцов, пуансонов, фильер и пр. невозможно, поскольку от детали требуется высокая поверхностная твёрдость. Между тем, при скоростном резании, холодном прессовании и других энергоёмких процессах обработки металлов начинают происходить механохимические реакции, интенсивность которых возрастает с увеличением температуры на контактной поверхности «инструмент-заготовка». Образующаяся при этом окись железа Fe2O3 отличается повышенной твёрдостью, и поэтому начинает интенсивно разрушать поверхность инструмента.

Методы борьбы с коррозией

Выбор подходящего способа защиты поверхности от образования ржавчины определяется условиями, в которых работает данная деталь или конструкция. Наиболее эффективны следующие методы:

  • Нанесение поверхностных атмосферостойких покрытий;
  • Поверхностная металлизация;
  • Легирование металла элементами, обладающими большей стойкостью к участию в окислительно-восстановительных реакциях;
  • Изменение химического состава окружающей среды.

Механические поверхностные покрытия

Поверхностная защита металла может быть выполнена его окрашиванием либо нанесением поверхностных плёнок, по своему составу нейтральных к воздействию кислорода. В быту, а также при обработке сравнительно больших площадей (главным образом, подземных трубопроводов) применяется окраска. Среди наиболее стойких красок – эмали и краски, содержащие алюминий. В первом случае эффект достигается перекрытием доступа кислороду к стальной поверхности, а во втором – нанесением алюминия на поверхность, который, являясь химически инертным металлом, предохраняет сталь от коррозионного разрушения.

Положительными особенностями данного способа защиты являются лёгкость его реализации и сравнительно небольшие финансовые затраты, поскольку процесс достаточно просто механизируется. Вместе с тем долговечность такого способа защиты невелика, поскольку, не обладая большой степенью сродства с основным металлом, такие покрытия через некоторое время начинают механически разрушаться.

Химические поверхностные покрытия

Коррозионная защита в данном случае происходит вследствие образования на поверхности обрабатываемого металла химической плёнки, состоящей из компонентов, стойких к воздействию кислорода, давлений, температур и влажности. Например, углеродистые стали обрабатывают фосфатированием. Процесс может выполняться как в холодном, так и в горячем состоянии, и заключается в формировании на поверхности металла слоя из фосфатных солей марганца и цинка. Аналогом фосфатированию выступает оксалатирование – процесс обработки металла солями щавелевой кислоты. Применением именно таких технологий повышают стойкость металлов от трибохимической коррозии.

Недостатком данных методов является трудоёмкость и сложность их применения, требующая наличия специального оборудования. Кроме того, конечная поверхность изменяет свой цвет, что не всегда приемлемо по эстетическим соображениям.

Легирование и металлизация

В отличие от предыдущих способов, здесь конечным результатом является образование слоя металла, химически инертного к воздействию кислорода. К числу таких металлов относятся те, которые на линии кислородной активности находятся возможно дальше от водорода. По мере возрастания эффективности этот ряд выглядит так: хром→медь→цинк→серебро→алюминий→платина. Различие в технологиях получения таких антикоррозионных слоёв состоит в способе их нанесения. При металлизации на поверхность направляется ионизированный дуговой поток мелкодисперсного напыляемого металла, а легирование реализуется в процессе выплавки металла, как следствие протекания металлургических реакций между основным металлом и вводимыми легирующими добавками.

Изменение состава окружающей среды

В некоторых случаях существенного снижения коррозии удаётся добиться изменением состава атмосферы, в которой работает защищаемая металлоконструкция. Это может быть вакуумирование (для сравнительно небольших объектов), или работа в среде инертных газов (аргон, неон, ксенон). Данный метод весьма эффективен, однако требует дополнительного оборудования — защитных камер, костюмов для обслуживающего персонала и т.д. Используется он главным образом, в научно-исследовательских лабораториях и опытных производствах, где специально поддерживается необходимый микроклимат.

Кто нам мешает, тот нам поможет

В завершение укажем и на довольно необычный способ коррозионной защиты: с помощью самих окислов железа, точнее, одного из них — закиси-окиси Fe3O4. Данное вещество образуется при температурах 250…5000С и по своим механическим свойствам представляет собой высоковязкую технологическую смазку. Присутствуя на поверхности заготовки, Fe3O4 перекрывает доступ кислороду воздуха при полугорячей деформации металлов и сплавов, и тем самым блокирует процесс зарождения трибохимической коррозии. Это явление используется при скоростной высадке труднодеформируемых металлов и сплавов. Эффективность данного способа обусловлена тем, что при каждом технологическом цикле контактные поверхности обновляются, а потому стабильность процесса регулируется автоматически.⁠

Читать еще:  Социальная карта ребенку из многодетной семьи
Ссылка на основную публикацию
Adblock
detector